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Abstract

The problem of recovering the ruin probability in the classical risk model based on the scaled 

Laplace transform inversion is studied. It is shown how to overcome the problem of evaluating the 

ruin probability at large values of an initial surplus process. Comparisons of proposed 

approximations with the ones based on the Laplace transform inversions using a fixed Talbot 

algorithm as well as on the ones using the Trefethen–Weideman–Schmelzer and maximum 

entropy methods are presented via a simulation study.
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1. Introduction

Recovering a function from its Laplace transform represents a very severe ill-posed inverse 

problem (Tikhonov and Arsenin [1]). That is why the regularization is very helpful in 

situations using the Laplace transform inversion. In Mnatsakanov et al. [2], the regularized 

inversion of the Laplace transform (Chauveau et al. [3]) has been used for approximation as 

well as for estimation of the ruin probability. Under the conditions on ruin probability, the 

upper bound for integrated squared error was derived, and rate of convergence of order 1/log 

n was obtained in the classical risk model. See also Shimizu [4] for application of this 

approach in estimating the expected discount penalty function in the Lévy risk model. Our 

simulation study shows that the approximation rate derived in Mnatsakanov et al. [2] is not 

optimal. This motivated our interest to improve the rate using the scaled Laplace transform 

inversion suggested by Mnatsakanov and Sarkisian [5].
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There are many approaches which deal with approximating the ruin probability ψ. See, for 

example, Gzyl et al. [6], Avram et al. [7], and Zhang et al. [8] among others. A very 

interesting approximation based on the Trefethen–Weideman–Schmelzer (TWS) method 

(see [9]) is constructed in Albrecher et al. [10]. In the latter work the authors assume that the 

claim size distribution represents a completely monotone function.

Note that there are several difficulties associated with inverting the Laplace transform. For 

example, when applying the Padé approximation one cannot guarantee the positivity of the 

obtained approximation of ψ, and its rate of convergence. Gzyl et al. [6] applied the 

maximum entropy (ME) method to approximate ψ. In order to reduce the ill-conditioning of 

ME approximation, the authors used the fractional moments of the exponential transform 

and derived an accurate approximation of ψ by reducing the ruin problem to the Hausdorff 

moment problem on [0, 1].

It is worth mentioning that the moment-recovered (MR) constructions proposed in Section 2 

also enable us to reduce the Stieltjes moment problem to the Hausdorff one (cf. with 

Corollary 1 (iii), as well as Corollary 4 (ii)–(iii) in Mnatsakanov [11] and [12], respectively).

Note also that the Laplace transform inversions proposed in [5–12] do not require the claim 

size distribution F to be a completely monotone function. See, for example, Gzyl et al. [6], 

where the ME method and MR-approach proposed in Mnatsakanov [12] are compared. In 

particular, the cases with gamma (a, β)) (with a > 1) and uniform on [0, 1] claim size 

distributions are considered. To conduct the comparison the authors used the formula from 

[12] (see also (A.4) in the Appendix) with the number of integer moments α = 60. In the 

case of the gamma (2, 1) model we show that the construction (17) has a better performance 

in terms of sup-norm when compared to the ME counterpart from [6] when α ≥ 60 and the 

optimal scaling parameter 1 < b ≤ e. As a result we obtained an accurate approximation of 

the ruin probability ψ (see Fig. 2(a) in Section 4). Calculations for large values of the 

parameter α ≥ 60 have been performed using a new programming language called 

SmartXML being developed by Artak Hakobyan (see his web page: www.oroptimizer.com). 

The calculations performed using SmartXML avoid many numerical problems, and perform 

very well for models related to the Hausdorff, Stieltjes, and Hamburger moment problems.

The main aim of present article is to derive the upper bound for the rate of MR-

approximation (4) of a function f in sup-norm and demonstrate its performance in the ruin 

problem via a simulation study. We show that the MR-construction of ruin probability, see 

(17) below, with the large value of α and appropriately chosen parameter b, performs better 

than its ME counterpart (cf. with [6]) and is comparable with the ones using TWS and a 

fixed Talbot (FT) algorithms (cf. with [10]).

The remainder of this article is organized as follows. In Section 2 we introduce two MR-

approximations of a function and its derivative, see (3) and (4), respectively, and provide the 

upper bound for MR-approximation (4); the upper bound for (3) has been already 

established in [5] (see also Theorem 1A in the Appendix). In Section 3, we propose two 

approximations (see (17) and (20)) of the ruin probability ψ, which are based on the finite 
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number of values of Laplace (ℒψ) and Laplace–Stieltjes (LG) transforms of ψ and G = 1 − ψ, 

respectively:

(1)

(2)

In Section 4 we consider two models (gamma and log-normal) in order to make a 

comparison with the approaches developed in [6] and [10]. In Examples 1 and 2 the 

performance of the proposed approximations are demonstrated graphically via Figs. 1 and 2 

and Tables 1–4. In the case of the gamma (2, 1) model, for several values of α and the 

scaling parameter b, the maximum deviations between approximants and the true ruin 

probability are recorded in Table 1. When the claim size distribution is gamma, we 

compared the MR-approximations (17) and (20) with the approximant ψFT that is based on 

FT algorithm.

In the case when the claim size distribution is log-normal (Example 3), several values of 

MR-approximation ψα,b defined in (17) are compared with those of ψTWS (see Table 5 

below and Table 9 in [10]).

Finally, in the Appendix, we recall two results derived in [5] and [12], where the rates of 

MR-approximations of a cumulative distribution function (cdf) F : ℝ+ → [0, 1] as well as 

the Laplace transform inversions in bivariate and univariate cases are presented.

2. Moment-recovered Laplace transform inversion

In this section we consider two approximations of the Laplace transform inversions 

recovering cdf F and its derivative f. Namely, let us suppose that a random variable X has a 

cdf F which is absolutely continuous with respect to the Lebesgue measure μ and has a 

support in ℝ+.

To recover F̄ = 1 − F and f consider:

(3)

and

(4)

respectively. Here we assume that α ∈ ℕ is an integer-valued parameter, and the scaling 

parameter b ∈ (1, e]. In other words, to evaluate the approximations F̄
α,b and fα,b, only the 

knowledge of the Laplace and Laplace–Stieltjes transforms evaluated at the finite arithmetic 

progression ℕα,b = {j ln b, j = 0, 1, …, α} are required. Also, note that construction (3) has 
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been proposed in [5] (Eq. (18)) and applied for approximation of a compound Poisson 

distribution as well as in a decompounding problem.

There are several other approximations of the Laplace transform inversion that use the 

Laplace transform evaluated at the set of finite or infinite values of argument of ℒf. We refer 

to [6] where the nested minimization procedure was used in combination with the ME 

method to solve the ruin problem. Their construction is based on choosing the optimal αj-

fractional moments (j = 1, …, M) of the random variable Y = e−X given the countable 

sequence of ordinary moments of Y. Application of the ME procedure to the distribution of 

Y = e−X is very helpful since it reduces the ruin problem to the Hausdorff moment problem 

on [0, 1], and provides a more stable procedure. We also refer to [13] where the ME method 

is applied to fractional moments in the Hausdorff case. The idea of using the transformations 

including the logarithmic one has been applied in other papers as well [5,12,14,15]. In [15] 

the sequence of fractional moments of Y of orders {αj, j ∈ ℕ} is used to invert the Laplace 

transform. Their technique is based on the orthogonal projections of the underlying function 

on the space generated by an orthogonal system of Muntz polynomials. Besides, they require 

the sequence {αj, j ∈ ℕ} to obey the following condition:

Actually, in the current work we also apply the above mentioned transformation and extend 

the MR-constructions ([12], see also (A.4) and (A.5) in the Appendix) to the case when the 

set of moments of non-integer orders ℕα,b of Y is used instead of the set ℕα = {0, 1, …, α} 

of integer orders. On the other hand, compared to the ME method in [6] and the orthogonal 

projection technique in [15], the constructions (3) and (4) provide direct analytical forms 

based on the first α values of the scaled Laplace transforms and depend only on 

appropriately chosen parameter b ∈ (1, e].

In the following, by “→w” we mean the weak convergence of cdfs (i.e., convergence at each 

continuity point of the limiting cdf), while the uniform convergence will be denoted by 

“→u”, and by ||f|| the sup-norm of f.

The upper bound in sup-norm for MR-approximation F̄
α,b has been derived in [5] (see also 

Theorem 1A in the Appendix). To establish the rate of approximation for fα,b let us recall 

the result from Mnatsakanov [11]:

Let Y be random variable with cdf Q defined [0, 1], and q = Q′ be its density. Assume that 

the moment sequence of Q (up to order α) is available:

(5)

Define the MR-approximation of q by means of , where
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(6)

Theorem 1 ([11])

i. If pdf q is continuous on [0, 1], then qα → uq, as α → ∞.

ii. If q″ is bounded on [0,1], then

(7)

Remark 1

To recover a cdf Q the following approximation

has been proposed and some of its properties were investigated in Mnatsakanov and 

Ruymgaart [16]. In particular, the relationship between Bα,Q and binomial mixture, as well 

as convergence Bα,Q → wQ were established: from Eqs. (3.3) and (3.9) we conclude

for any continuity point x of Q. Here by B(α, t) we denote a binomial random variable with 

parameters α and t. In other words, for the binomial random variable B(α, Y) with random 

parameter Y we have the following relationship:

Finally, note that if the sample Y1, …, Yn from Q is available, then the empirical counterpart 

of Bα,Q(x) provides the estimate of Q(x):

(cf. with Eq. (13) in [5]).

Now, assume that Q(u) = F(ϕ−1(u)), where ϕ−1(u) is an inverse function of some decreasing 

function ϕ : ℝ+ → [0, 1]. Note that
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(8)

Consider the following conditions:

(9)

(10)

Let νϕ = {mϕ(j) = ∫[ϕ(t)]j f(t)dt, j ∈ ℕα}, q̄ = −q with , and 

with

(11)

In the next statement we establish a new upper bound that is valid for any continuous and 

decreasing function ϕ : ℝ+ → [0, 1] satisfying conditions (9) and (10). Namely,

Lemma 1

i. Assume f and ϕ are both continuous functions on ℝ+, then

ii. Assume f has up to second order finite derivatives, ϕ has derivatives up to order 

three, and the conditions (9)–(10) are satisfied. Then

Proof of Lemma 1—Note that

(12)

Hence, combining (11) and (12) with (5) and (6) and the statement Theorem 1 (i), we obtain 

(i).
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The statement (ii) follows from (8) to (10) and Theorem 1 (ii), since according to (7) we 

have

Consider the following conditions:

(13)

In the following statement, we use the generic constant Ck, k = 0, 1, 2, that can be easily 

identified by means of the constants Ak, k = 1, 2, 3, and conditions (9)–(10), where ϕ(x) = 

b−x, x ∈ ℝ+, with some b > 1.

Theorem 2

Assume f is a continuous function on ℝ+ and ϕ(x) = b−x for some b > 1.

i. Then fα,b → uf;

ii. If f has up to second order finite derivatives and conditions (13) are satisfied, then

(14)

Proof of Theorem 2—follows directly from Lemma 1. We only need to note that for ϕ(x) 

= e−xln b, x ∈ ℝ+, with some b > 1, we have ϕ′(x) = −b−x ln b, which, in combination with 

Lemma 1 (i) and (4), provides (i):

uniformly on ℝ+, as α → ∞. To prove (ii), let us mention that the functions f, f′, and f″, 

satisfying conditions (13) also satisfy conditions (9) and (10) with ϕ(x) = b−x, b > 1. Hence, 

application of Lemma 1 (ii) and (4) yields (14).

3. Approximation of the ruin probability

Let us mention another application of the moment-recovered construction (4) in the 

framework of a classical risk model. In actuarial literature, it is well known that the 

evaluation of the ruin probability ψ = 1 − G with

(15)
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is a difficult problem when the distribution F of claim sizes Xk’s does not follow the 

exponential model. Usually, the insurance company receives income from the policies at a 

constant rate c > 0 per unit time, and it is assumed (the classical risk model) that N(t), t ≥ 0, 

is a Poisson process with intensity λ > 0. Also, it is assumed that N is independent from the 

sequence X1, X2, …. Here u > 0 is the initial capital of the company at time t = 0.

Now, let us consider the scaled, by c = ln b, Laplace transform ℒψ(s ln b) of ψ. One can 

apply the Pollaczek–Khinchine formula to obtain the following expression:

(16)

(cf. with Mnatsakanov et al. [2]). Here we assume ρ = λcE(X) < 1, and λc := λ/c.

To have a better graphical illustration of the MR-approximation (4), we suggest use of the 

factor [αb−x]/α instead of b−x in the right-hand side of (4). Namely, consider

(17)

(cf. with (A.4) from the Appendix).

It is worth mentioning that, given the sample X1, …, Xn from F, we can estimate ℒψ in (16) 

by using the sample mean X̄, ρ̂ = λcX̄, and the empirical Laplace transform

Hence, applying ℒ̂
ψ instead of ℒψ in the right hand side of (17), we derive the estimate of ψ:

(18)

Here

(19)

Remark 2

Note that (3) recovers the survival function F̄ given the Laplace–Stieltjes transform LF of F. 

Hence, to approximate or estimate the ruin probability ψ one can also apply (3) where the 
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Laplace–Stieltjes transform LG of G = 1 − ψ is provided. In particular, combining (3) with 

LG evaluated according to the formula (cf. with Dickson [17]):

we derive another approximate  of ψ. Namely,

(20)

(cf. with (A.5) from the Appendix). It is worth noting that from a simulation study we found 

out that in (20) (Table 4) as well as in (17) (Tables 2, 3 and 5) it is better to use the rounding 

value [αb−x] instead of the integer part of αb−x.

4. Examples

In this section we consider three examples. In Examples 1 and 2 we assume that the claim 

size distribution is specified as gamma (a, β) with two different pairs of the shape=a and 

scale=β parameters: (a, β) ∈ {(2, 1), (2.5, 0.4)} and λc ∈ {0.2, 1.1}. In Example 3 we 

consider the log-normal (−1.62, 1.8) model with λ = 1 and c ∈ {1.05, 1.1, 1.15, 1.20, 1.25, 

1.30, 2.0}. To present the smoothed (linearized) versions of the recovered ruin probabilities, 

we conducted our calculations by evaluating the values of ψα,b(x) and ψ̂
α,b(x) at x ∈ {(lnα − 

ln (α − j + 1))/ln b, 1 ≤ j ≤ α} and plotted their linear interpolations in Fig. 1.

Example 1

Assume X has a gamma density  for x > 0. In this case the Laplace 

transform of f is

and ℒψ is defined as in (16). Consider the special case with a = 2, β = 1, λ = 1, and c = 5, 

i.e., λc = 0.2. This example is taken from Gzyl et al. [6], where the authors derived the exact 

form of true ruin probability

(21)

Derivation of (21) is based on direct inversion of
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where  are the roots of quadratic equation 5s2 + 9s + 3 = 0. In [6], the 

MR-approximation (4) with b = e, i.e., (A.4) was evaluated as well. It should be mentioned 

that the value b = e is recommended for use when the underlying function has a bounded 

support. The proposed approximation ψα,b in (17) with b < e behaves much better if 

compared to the one with b = e.

At first, we evaluated several values of 100 × ||ψα,b − ψ||, when the range of α is specified as 

follows: 26 ≤ α ≤ 32, and b = 1.1 + 0.01k, 0 ≤ k ≤ 20. The pair α = 27, b = 1.28 was found to 

be the optimal one with corresponding value of 100 × ||ψα,b − ψ|| = 0.60839. In Fig. 1 we 

compared ψα,b(x) (dotted curve) and ψ̂
α,b(x) (dotted curve) with the true ruin probability 

ψ(x) (solid curve) when b = 1.28 and b = 1.23, respectively. In both plots we assumed α = 

27.

To demonstrate how the accuracy of the approximation behaves when α increases, in Table 

1 we recorded several values of 104 × ||ψα,b − ψ||, when α = 10 k, k = 6, 9, 12, 15, 20, 40, 

and 1.35 ≤ b ≤ 1.50. Within this range of α, we found out that the pair α = 400, b = 1.415 

can be considered as the optimal one since corresponding normalized absolute error 104 × ||

ψα,b − ψ|| = 1.3240 is the smallest one. Let us compare ψα,b with construction ψEME which is 

based on the elaborate ME (EME) method combined with the nested minimization 

procedure when the number of fractional moments M = 8. The values of ψEME have been 

cordially provided by Aldo Tagliani. In Fig. 2(a) we plotted the absolute errors of both 

approximations ψα,b (solid and slashed curves) and ψEME (dotted curve) as the functions of 

initial surplus. From Fig. 2(a) we conclude that for chosen values of parameters, α = 90, 

400, b = 1.415, the MR-approximate ψα,b has a better performance in terms of the sup-norm 

if compared to ψEME when M = 8. In addition, in Table 2, several values of ψα,b along with 

corresponding values of the approximant ψFT are recorded when α = 5000, b = 1.4125.We 

can say that by increasing α we improve the accuracy of ψα,b considerably.

Example 2

Assume now that Xk’s have gamma (2.5, 0.4) distribution. This example is taken from 

Albrecher et al. [10]. Here we compare the performances of ψα,b and  with ψFT that is 

based on the FT-algorithm introduced in Abate and Valkó [18]. In this example (see Table 

3) by taking the parameter α = 4000 in ψα,b we reproduced four digits of the values derived 

by the FT-algorithm. By increasing α one can construct more accurate approximation of ψ 

using the SmartXML programming language and/or Mathematica package. In Table 4, 

several values of  and ψFT are compared when α = 1000.

Note that the algorithms written for evaluating the MR-approximations ψα,b and  are not 

as fast as the one based on the FT algorithm, see the last columns of Tables 3 and 4 where 

the total execution times for each row are recorded.
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The plot in Fig. 2(b) displays the difference Δψ(xj) = ψα,b(xj) − ψFT(xj) evaluated at xj = log 

(α/(α − j + 1))/log b for several values of j = 500k, 0 ≤ k ≤ 34, when α = 4000 and b = 

1.14795.

Example 3

Finally, consider the case when the claim size distribution f is specified as log-normal (μ, σ) 

with μ = −1.62 and σ = 1.8. Let us compare ψα,b with approximation ψTWS proposed in 

Trefethen et al. [9]. To approximate ℒf we used the algorithm cordially provided by 

Hansjörg Albrecher that was applied in Albrecher et al. (2010) as well. Substitution of 

approximated values ℒ̃
f of ℒf into (16) and (17) yields the approximation ψ̃

α,b. In Table 5, 

see below, we took α = 200 and b = 1.004158. Several values of ψ̃
α,b as well as those of 

ψTWS are recorded when λ = 1 and c ∈ {1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 2.0}. Here the values 

of ψTWS are borrowed from Table 9 in [10].

5. Conclusions

From the simulation study we conclude that the accuracy of the approximation ψα,b is 

considerably improved compared to the ones when the smaller values of parameter α are 

used. We also saw that the choice of optimal b depends on the behavior of ψ on the tail. 

Namely, the smaller values of b are recommended when ψ has a long tail. Besides, if α is 

larger than 60, then ψα,b performs better in terms of sup-norm when compared with the ME 

approximation ψEME with M = 8 fractional moments. Based on the model considered in 

Example 2, we see that both ψα,b and ψFT are comparable if α is considerably large. And 

lastly, note that performance of ψα,b is also comparable with approximation the ψTWS based 

on Trefethen–Weideman–Schmelzer method. Only the execution time is slow.

Finally, let us state several advantages of the MR-approximations ψα,b and : (a) they can 

be easily implemented; (b) in general, ψα,b performs better when compared to ; (c) the 

proposed constructions are based on the knowledge of the Laplace transforms evaluated for 

only a finite number of positive arguments; (d) construction ψ̂
α,b based on the empirical 

Laplace transform ℒ̂
f provides sufficiently good estimate of ψ; (e) in our calculations we 

were able to use the number α ≥ 60 combined with optimal 1 < b ≤ e. As a result we 

obtained a more accurate approximation of the ruin probability ψ when compared to the 

MR-approximation based on [12] (i.e., when b = e).

The disadvantage of ψα,b(u) and  is that for calculation of their values at very large 

initial capital u > 0, one should consider a sufficiently large value of α combined with a 

sufficiently small value of b > 1, such that u ≤ ln α/ln b; the values of both ψα,b(u) and 

 with u > ln α/ln b become small but constant. Besides, the evaluation time for  is 

too large when compared to other approaches considered in this work. It can be explained by 

presence of double summation in definition of .
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Appendix

Below we recall two statements established in Mnatsakanov [5,12].

Assume that for some b ∈ (1, e]:

(A.

1)

Let Fα,b = 1 − F̄
α,b with F̄

α,b defined in (3).
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Theorem 1A ([5])

If the functions f and f′ are bounded on ℝ+ and conditions (A.1) are satisfied, then Fα,b →u 

F, and

Consider the moment sequence of a bivariate distribution F: [0, 1]2 →[0, 1]:

Define the following transformations  and  of ν = {μj,m, (j,m) ∈ ℕa} by

(A.

2)

and

(A.3)

where 0 ≤ x, y ≤ 1, a = (α,α′) with α,α′ ∈ ℕ.

Let us recover the bivariate distribution  and its density function f from 

knowledge of their Laplace–Stieltjes transform

Here ϕk(x) = e−x, k = 1, 2. The MR-constructions (A.2) and (A.3) can be applied to 

approximate the Laplace transform inversions in this case too. The following statement is 

valid.

Theorem 2A (Corollary 4 in [12])

Let ν = {μj,m(F) = LF (j,m), (j,m) ∈ ℕa}.

i. If , then Fa,ν → wFν, where , x, y ∈ [0,1].

ii. If F̄
a,ν (x, y) = Fa,ν (ϕ1(x),ϕ2(y)), x, y ∈ ℝ+, then F̄

a,ν →w F̄
ν, as a → ∞, where F̄

ν 

is the survival function of F, .
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iii. If  is defined by (A.3) and , then 

 f on any compact in .

Remark A1

If 1 = (1, 1), ν = {μj,m = LF (j,m), (j,m) ∈ ℕa}, and the operator  is defined according to 

(A.3), then to recover pdf f by means of LF one can take:

For the univariate case, taking

we obtain the Laplace inversions for recovering f and F̄ = 1 − F, respectively:

(A.4)

(A.5)
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Fig. 1. 
X ~ gamma(2, 1), ψ(x) = 0.461862 e−0.441742 x − 0.061862 e−1.358257 x. (a) Approximated 

ψα,b (dotted) ruin probability when b = 1.28. (b) Estimated ψ̂
α,b (dotted) ruin probability 

when b = 1.23 and n = 500. In both plots α = 27 and λc = 0.2.
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Fig. 2. 
(a) X ~ gamma(2, 1). Absolute errors |ψEME − ψ | (dotted) and | ψα,b − ψ | (solid and 

slashed), when M = 8, α = 90, and α = 400, respectively. Here λc = 0.2, b = 1.415. (b) X ~ 

gamma(2.5, 0.4); difference ψα,b − ψFT with α = 4000 and b = 1.14795. Here λ = 1 and c = 

1.1.
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